Revision Guide

Fractions
Ratio
Factors
Simultaneous Equations

achildsguideto

A $\begin{array}{r}\text { Fractions } \\ \text { What fraction of the foll }\end{array}$
What fraction of the following shapes are blue?
C Find fractions of amounts Find $\frac{13}{20}$ of 65

(of" means times

Find $\frac{19}{20}$ of 250
Find $\frac{7}{10}$ of $175 \quad$ Find $\frac{29}{50}$ of 430

B Convert fractions into decimals and percentages

$\frac{70}{20}=3$

Convert improper fractions into fractions

Divide the numerator by the
denominator. The integer part of this is the whole amount.

$$
\begin{array}{lll}
\frac{148}{20}= & \frac{12}{9}= & \frac{27}{16}= \\
\frac{83}{16}= & \frac{26}{12}= & \frac{37}{15}= \\
\frac{67}{25}= & \frac{35}{25}= & \frac{23}{8}=
\end{array}
$$

A

Ratio
Calculate the number of parts in each of the following ratios.

$4: 5: 6$	parts	$7: 3: 8$	parts
8:3:12	parts	$9: 3: 8$	parts

B Find the value of one part when given a total.

Bill, Julie and Ted share $£ 75$ in the ratio $3: 4: 8$. What is the value of one part?

C Find the value of one part when given a total. Joanne, Neville and Imran share 35 sweets in the ratio 2:1:4. What is the value of one part?

James, Simba and David share $£ 250$ in the ratio 9:12:4. What is the value of one part?

Marcus, Jeremy and Paula share 15 shopping bags in the ratio $2: 1: 2$. How many shopping bags are the value of one part?

Charlie, Freda and Samantha share driving out in the ratio $4: 5: 7$. Altogether, they drove 320 miles. What is the value of one share of the driving?

D
Find the value of one part when given a single share.
Bill, Julie and Ted share some money in the ratio 3:4:8. Ted got $£ 240$. What is the value of one part?

E Find the value of one part when given a single share.
Simon, David and Joshua shared some sweets in the ratio 6:7:4. David got 28 sweets. What is the value of one part?

Matthew, Mike and Sam went for a road trip. They divided the number of hours driving in the proportion 12:14:15. Sam drove for 56 hours. How much was the value of one part?

Find the value of one part when given a difference between shares.

Nadia, Cameron and Joanne saved some money so that the ratio of the their savings was $3: 4: 7$. Joanne saved $£ 12$ more than Cameron. How much is the value of one part?

Vicky, Ben and Joshua have a large record collection that they have purchased over the years in the ratio 7:12:13. Ben has 30 more records than Vicky. How many records form one part?

Find out how much each person has.

Nadia, Cameron and Joanne saved some money so that the ratio of the their savings was 3:4:7. Joanne saved $£ 12$ more than Cameron. How much did each person save?

Add up the parts. This becomes the denominator
6:9:22
11:26:19
12:23:41

Joanne, Neville and Imran share 35 sweets in the ratio 2:1:4. How many sweets did each person receive?

Matthew, Mike and Sam went for a road trip. They divided the number of hours driving in the proportion 12:14:15. Sam drove for 56 hours. For how long did each person drive?

James, Simba and David share $£ 250$ in the ratio 9:12:4. How much did each person share?

Bill, Julie and Ted share some money in the ratio 3:4:8. Ted got $£ 240$. How much was each person given?

Simon, David and Joshua shared some sweets in the ratio 6:7:4. David got 28 sweets. How many sweets did Simon and Joshua receive?

Marcus, Jeremy and Paula share 15 shopping bags in the ratio $2: 1: 2$. How many shopping bags did each person carry to the car?

Vicky, Ben and Joshua have a large record collection that they have purchased over the years in the ratio 7:12:13. Ben has 30 more records than Vicky. How many records had each person purchased?

Nadia, Cameron and Joanne saved some money so that the ratio of the their savings was $3: 4: 7$. Joanne saved $£ 12$ more than Cameron. How much had each person saved?

Charlie, Freda and Samantha share driving out in the ratio $4: 5: 7$. Altogether, they drove 320 miles. For how many miles did each person drive?

Exchange Rates £1:1.70 Sin\$

I swap $£ 450$ into Singapore dollars. How much do I get? I have Sin\$185 to change back into GB£. What do I get?

Divide the amount by the exchange rate of the money you are changing from

I go to Australia with $£ 1250$. The exchange rate is $£ 1: 1.85$ AU\$. I spend AU\$ 2150. How much money in GB£ do I return home with?
I go to the USA with $\$ 4000$. The exchange rate is $£ 1: 1.19$ US\$. How much GB£ did I need to purchase this amount? I spent $\$ 3650$. How many GB£ did I have remaining?

Simplify the following ratios

1. $8: 4$
2. $12: 9$
3. $15: 20: 35$
4. $18: 24: 48$
5. 21: $14: 28$

Write the following in the form 1: n or 1:n:m

1. $8: 2$
2. $12: 40$
3. $5: 7$
4. $8: 24: 12$
5. $10: 14: 28$

Write the following in the form $\mathrm{A}: \mathrm{B}: \mathrm{C}$

1. $A: B$ s $3: 2$. $B: C$ is $5: 4$
2. $A: B$ is $8: 5 B: C$ is $7: 4$
3. $A: B$ is $9: 2 A: C$ is $6: 5$
4. $A: B$ is $9: 4 B: C$ is $8: 7$
5. $A: B$ is $11: 5 A: C$ is $9: 4$

Proportion

1. 8 apples cost 40 p. How much for 5 apples?
2. A recipe uses 350 g flour for 5 buns. How much is needed for 11 buns?
3. 6 pens cost $£ 4.80$. How much do 11 pens cost?
4. 300 g of sweets cost $£ 1.44$. How much for 1 kg ?
5. 4 men take 7 hours to do some work. How long would it take 3 men?
6. It takes three hosepipes 4 hours to fill a pond. How long would it take five hosepipes?

Exchange Rates

1. $£ 1: \$ 1.25$ How many $\$$ for $£ 250$?
2. $£ 1: R 24$ How many $£$ for R500?
3. £1: AU\$2.15 How many $£$ for AU\$600?
4. $\$ 1: £ 0.71$ How many $£$ for $\$ 650$?
5. $£ 1: \$ 1.43$ How many $£$ for $\$ 450$?
6. $£ 1$: AU\$2.43 How many $£$ for AU $\$ 450$?

Best Value

1. Bill wants to travel 16 miles. Taxi A $£ 3.00+£ 1.20$ per mile Taxi $B £ 6.50+£ 0.98$ per mile Taxi $C £ 10.00+£ 0.76$ per mile Which taxi should he use and how much would it cost?
2. Mary wants to go shopping. She hasn't got a car so chooses to go by bus to one place. She wants to buy two legs of lamb and twelve tins of soup.
Centre A Lamb: $£ 11.20$ per leg Soup: $£ 1.45$ per tin
Centre B Lamb: $£ 14.00$ per leg Soup: $£ 0.98$ per tin
To which shopping centre should she go?
3. The Smiths want to go on holiday. There are four of them. They choose to go for seven nights.

Travel Agent A
Return Flight $£ 284.95$ each.
Hotel $£ 78.95$ per person per night
Travel Agent B
Return Flight $£ 437.55$ each.
Hotel $£ 57.14$ per person per night
With which travel agent should the Smith family book their holidays?

How much did each person get?

1. Bill and John share an inheritance in the ratio 4:7. The inheritance was $£ 781$. How much did each person receive?
2. Naveed, Akash and Nimrah receive some money for Eid. The money they receive is in the proportion 7:3:6. Naveed gets $£ 161$. How much do the other two get?
3. lan, Joanne and Mary buy some shares in the proportion 8:11:4. Joanne pays $£ 954$ more than lan on the shares. How much does each person pay for the shares?
4. Neil, Simon and Matthew went out for a curry. Altogether, the bill came to $£ 128$. They put in all the money they had with them in the ratio $4: 5: 7$. How much did each person pay?
5. Martin, Vicky and Mark all go on holiday with their families. The size of there families are in the ratio 5:3:4. The amount they spent on their holidays per person was in the ratio $4: 7: 6$. If Vicky spent a total of £396.90, how much did Martin and Mark spend?

Probability

1. The ratio of throwing heads or tails on a biased coin is $6: 5$. Bill threw the coin 550 times. How many times would you expect it to come up heads?
2. The ratio of winning to losing at a game of cards are $3: 7$. What are the chances of winning four games in a row?
3. A dice has a 0.3 chance of landing on 6. The chances of rolling any number from 1 to 5 are the same as each other. What is the ratio for rolling a 6 to rolling an odd number?
4. Bill and Ted were investigating prime and composite numbers. They split all the numbers from 1 to 200 into blocks of 20 (ie $1-20,21-40,41-$ 60 and so on).

Bill said, "As the number of the block gets higher, the ratio of prime to composite gets smaller."

For each block, work out the ratio in the form 1:n to determine whether Bill was correct.

Write these ratios as fractions

1. $8: 4: 9$
2. $15: 7: 11$
3. $15: 20: 35: 18$
4. $18: 24: 48: 8: 12$
5. $42: 14: 28: 15: 16$

Write these fractions as ratios in their simplest form

1. $\frac{16}{25} \quad \frac{45}{50}$
2. $\frac{3}{10} \quad \frac{4}{25}$
3. $\frac{28}{35} \quad \frac{15}{50}$
4. $\quad \frac{62}{100} \quad \frac{84}{200}$

Midpoints and Endpoints

A line segment $A B$ runs from $(3,7)$ to $(5,15)$. What are the co-ordinates of the following points.
a The midpoint
b The point at a ratio of $2: 3$ along $A B$
c The point at a ratio of $4: 8$ along $A B$

Factors and Factorising

List the factor pairs of the following numbers.

28: $1 \times 28,2 \times 14,4 \times 7$	$26:$
$35:$	$49:$
$81:$	$50:$
$75:$	$144:$
Do you notice anything about the square numbers $(49,81$ and 144$)$ that is different from the others?	

B Write the factors of the following numbers in $\{\ldots\}$
28: $\{1,2,4,7,14,28\}$
26:
35:
49:
81:
75:
144:
$\{\ldots$ \} are called braces and we use them in both maths and English to contain a set of items that have something in common with each other

C Draw a factor tree for each of the numbers listed below.

Find possible numbers given the HCF and LCM

There are various answers for these types of question.
A and B are two integers.
The $\operatorname{HCF}(\mathrm{A}, \mathrm{B})=18$ and the $\operatorname{LCM}(\mathrm{A}, \mathrm{B})=648$.

1. Draw a factor tree for the HCF and LCM What could A and B be?

2. The remaining numbers from the LCM can be placed where you like, outside the intersect, in the Venn diagram.
3. Put the factors from the HCF in the intercept section of the Venn diagram.

$$
A=2 \times 2 \times 2 \times 3 \times 3=72
$$

$$
B=2 \times 3 \times 3 \times 3 \times 3=\widehat{162}
$$

 648 108
\qquad
5. Multiply the numbers in circle A and then multiply the numbers in circle B.

Using HCF and LCM in algebra

Factorise $8 p^{2} q^{3} r^{5}+36 p^{3} q r^{2}$

$$
\begin{gathered}
8 p^{2} q^{3} r^{5}=2 \times 2 \times 2 \times p \times p \times q \times q \times q \times p \times p \times r \times r \times r \\
36 p^{3} q r^{2}=2 \times 2 \times 3 \times 3 \times p \times p \times p \times q \times \not \times q \times q
\end{gathered}
$$

Factorise $16 x^{2} y^{3} z^{5}+40 x^{3} y z^{2} \quad$ Factorise $18 t^{5} v^{3} w+66 t^{2} w-12$
Factorise $35 c^{5} d^{2} e+75 c^{3} d^{2} \quad$ Factorise $48 k^{2} r+64 k^{5} t-6 t^{2}$

A Choose the variable you want to keep.

$$
\begin{aligned}
3 x+8 y & =74 \\
3 x+y & =25
\end{aligned}
$$

The x coefficient (number in front of the x) is the same in both cases. You can take one from the other leaving just the y part of the equation. It doesn't matter if the number is negative or positive at this stage.

$$
\begin{aligned}
6 x+5 y & =74 \\
6 x+2 y & =25 \\
2 x+4 y & =20 \\
2 x+4 y & =36 \\
3 x+y & =37 \\
3 x+y & =23
\end{aligned}
$$

C Find the value of the first variable

$$
\begin{gather*}
3 x+8 y=74 \\
3 x+y=25 \tag{i}
\end{gather*}
$$

Subtract (i) - (ii)
$(3-3) x+(8-1) y=74-25$

$$
\begin{aligned}
7 y & =49 \\
y & =7
\end{aligned}
$$

B
Add or subtract the equations

$$
\left.\begin{array}{rlr}
3 x+8 y & =74 \\
3 x+y & =25
\end{array} \quad \right\rvert\, \begin{aligned}
9 x+5 y & =53 \\
4 y-9 x & =10
\end{aligned}
$$

Here, the "signs" for the

coefficients in front of the variable you want to remove are the same (ie both positive) so you need to subtract the equations.

Here, the "signs" for the coefficients in front of the variable you want to remove are the different (ie positive and negative) so you need to add the equations so the x terms cancel each other out
$\left.\begin{array}{c}6 x+5 y=74 \\ 6 x+2 y=25 \\ 6\end{array}\right)$

D Find the value of the second variable

$$
\begin{gathered}
3 x+8 y=74 \ldots \ldots \text { (i) } \\
:
\end{gathered}
$$

Substitute in (i)

$$
\begin{aligned}
3 x+8(7) & =74 \\
3 x & =74-56 \\
3 x & =18 \\
x & =6
\end{aligned}
$$

We take the value for y (which we found in part C) and substitute it into this equation.

[^0]
Simultaneous Equations

E What if the coefficients are related but not the same?

Neither the x nor the y coefficients are the same , you multiply equation (ii) $\times 4$, you will get a y continue as before.

$$
\begin{equation*}
3 x+8 y=106 \tag{l}
\end{equation*}
$$

Multiply (ii) $\times 4$
$4 x+8 y=112$
Subtract (iii) - (i)

$$
\begin{equation*}
(4-1) x+(8-8) y=112-106 \tag{iii}
\end{equation*}
$$

G Solve the equations in their entirety.

$$
\begin{aligned}
9 x+8 y & =47 \ldots \ldots(\text { (i) } \\
5 x-3 y & =41 \ldots \ldots \text { (ii) }
\end{aligned}
$$

Multiply (i) $\times 5$, (ii) $\times 9$

$$
\begin{align*}
45 x+40 y & =235 \ldots \ldots \text { (iii) } \tag{iii}\\
45 x-27 y & =369 \ldots \ldots \text { (iv) }
\end{align*}
$$

Subtract (iii) - (iv)
$(45-45) x+(40-(-27)) y=235-369$

$$
\begin{array}{|r|r}
\hline \text { Be careful with } \\
\text { double } \\
\text { minuses etc. }
\end{array} \quad \begin{aligned}
67 y & =-134 \\
y & =\frac{-134}{67} \\
y & =-2
\end{aligned}
$$

Substitute in (i)

$$
\begin{aligned}
9 x+8(-2) & =47 \\
9 x-16 & =47 \\
9 x & =47+16 \\
9 x & =63
\end{aligned}
$$

Check in (ii)
$5 x-3 y=41$
(ii) $5(7)-3(-2)=41$

$$
\begin{aligned}
& 1 \quad 11 x+6 y=30 \ldots \ldots \text { (i) } \\
& 5 x-5 y=60
\end{aligned}
$$

What if the coefficients are unrelated and not the same?
$7 x+8 y=43$
$5 x+3 y=47$

Here, the coefficients are unrelated: 8 is not a multiple of $3 ; 7$ is not a multiple of 5. You decide which term, x or y, you wish to get rid of.
Imagine we have chosen, "Get rid of x ".
Multiply equation (i) $\times 5$ (which is the x coefficient in equation (ii))
Then, multiply equation (ii) $\times 7$ (which is the x coefficient in equation (i))
If you had decided on y, you would multiply (i) $\times 3$ and (ii) $\times 8$.

Multiply (i) $\times \mathbf{5}$, (ii) $\times \mathbf{7}$

$35 x+40 y=215$
$35 x+21 y=329$
Subtract (iii) - (iv)

Equal coefficients

This may involve finding one unknown in each equation with the same coefficients or multiplying one of more of the equations to manufacture the same coefficients.

Get rid of one unknown

This involves either adding (if the coefficients are of different signs (- or +) or subtracting if they are the same sign.

Substitute into equation (i) or (ii)

Swap the value you have found for x or the value you have found for y into equation (i) or (ii). Solve the equation.

Check your answer

Swap the value you have found for x or the value you have found for y into the other equation. If it works - give yourself a tick!!

Note the strategy for solving simultaneous linear equations

Answers to part G

1	$x=6$	$y=-6$
2	$x=18$	$y=61$
3	$x=17$	$y=-11$
4	$x=-3$	$y=16$
5	$x=1.2$	$y=0.4$
6	$x=-11$	$y=51$

[^0]: Now answer questions 1-7 given in \mathbf{A}

